martes, 22 de septiembre de 2015

LA ROBÓTICA CUÁNTICA

LA ROBÓTICA CUÁNTICA

La robótica cuántica avanza. Los científicos intentan desarrollar instrucciones lógicas suficientemente flexibles para que los ordenadores sean capaces de aprender por si mismos y de esta manera prever con mayor precisión. El 'cuando tu vas yo vengo' será posiblemente el patrón de 'pensamiento' cibernético más usual en el futuro de las relaciones con los humanos, los pilares del próximorobot humanoide se están construyendo. A imagen y semejanza del ser humano.
Investigadores de la Universidad Complutense de Madrid(UCM) y la Universidad de Innsbruck (Austria) publican un trabajo en la revista 'Physical Review X' donde auguran que la computación cuántica abre nuevos desarrollos en el campo de la robótica y en aquellos relacionados con la Inteligencia Artificial(IA). Por primera vez estos científicos han demostrado que las máquinas cuánticas se adaptan a situaciones donde las clásicas no terminan los procesos de aprendizaje y respuesta. Estos investigadores afirman que las máquinas cuánticas pueden responder de forma óptima y más rápida a la hora de actuar frente al entorno que las rodea, publica Sinc.

APUESTA DE GOOGLE Y DE LA NASA

La denominada 'inteligencia artificialcuántica' (Quantum AI) es un ámbito en el que la compañía Googleha comenzado a invertir millones de dólares mediante la creación de un laboratorio especializado en colaboración con la NASA. Ante el tamaño de los patrocinadores, pocos dudan del éxito de las investigaciones.
¿Pero que es eso de la robótica cuántica? Se basa en arquitecturas lógicas que utilizan algoritmos más veloces y flexibles que los habituales, una vuelta de tuerca revolucionaria frente a la lógica del 'if-then'. Los computadores cuánticos de D-Wave Systems para Google, por ejemplo, son sistemas que cuestan en torno a los 10 o 15 millones de dólares, manejan 512 qbits y son 3.600 veces más rápidos que un computador convencional.

APLICACIONES CUÁNTICAS

Esa monstruosa potencia de cálculo se destina al desarrollo de aplicaciones que permitirán a Google servicios de búsqueda más efectivos. La idea es que el sistema sea capaz de adelantarse a los deseos del usuario y ofrecerle información antes incluso de que la demande. Eso puede hacerse a través de la adaptación al usuario, el conocimiento del historial, la posición geográfica, informaciones generadas en el pasado, la acumulación de los patrones de comportamiento anteriores, etcétera. El sistema dotado de un motor cuántico es capaz de entrelazar información con cierta iniciativa, es capaz de predecir más allá de los denominados programas expertos que símplemente analizan la información mediante secuencias lógicas tras respuestas. Algunos científicos apuntan que estos nuevos sistemas cuánticos serán capaces de reconocer la voz y procesar el lenguaje natural por esa flexibilidad 'tan humana'.

ROBOT CON CAPACIDAD DE ADAPTACIÓN

"En el caso de entornos muy exigentes e 'impacientes', el resultado es que el robot cuántico puede adaptarse y sobrevivir, mientras que el robot clásico está destinado a desfallecer", explican G. Davide Paparo y Miguel A. Martín-Delgado, los dos investigadores de la UCM que han participado en el estudio.

APRENDIZAJE ROBÓTICO

Su trabajo teórico se ha centrado en acelerar de forma cuántica uno de los puntos más difíciles de resolver en informática: el aprendizaje robótico (machine learning, en inglés), que se utiliza para elaborar modelos y predicciones muy precisas. Se aplican también para conocer la evolución del clima, las enfermedades o en ese referido desarrollo de los motores de búsqueda por internet. "Construir un modelo es realmente un acto creativo, pero los ordenadores clásicos no son buenos en esto –dice Martin-Delgado–. Ahí es donde entra en juego la computación cuántica. Las ganancias que aporta no son solo cuantitativas en cuanto a mayor velocidad, también cualitativas".

TRUFAR ROBÓTICA CUÁNTICA Y ROBOTS HUMANOIDES

Otros desarrollos en el campo de la robótica humana se acercan más a lo anunciado en la película 'Blade Runner' (vale, sí, aquellos erán robots fruto de la ingeniería genética). Aquellos que visiten el museo de la ciencia de Tokio podrán ver el grado de sofisticación de la humanización de robots (ver vídeo). Trufar la computación cuántica con esos robots de aspecto humano hará que la visión del 2019 de la película protagonizada por Harrison Ford esté más cerca que nunca, aunque todavía queda mucho por hacer.

EL MERCADO DE LA ROBÓTICA Y LAS PERSPECTIVAS FUTURAS

EL MERCADO DE LA ROBÓTICA Y LAS PERSPECTIVAS FUTURAS


Las ventas anuales para robots industriales han ido creciendo en Estados Unidos a razón del 25% de acuerdo a estadísticas del año 1981 a 1992. El incremento de ésta tasa se debe a factores muy diversos. En primer lugar, hay más personas en la industria que tienen conocimiento de la tecnología y de su potencial para sus aplicaciones de utilidad. En segundo lugar, la tecnología de la robótica mejorará en los próximos años de manera que hará a los robots más amistosos con el usuario, más fáciles de interconectar con otro hardware y más sencillos de instalar.
En tercer lugar, que crece el mercado, son previsibles economías de escala en la producción de robots para proporcionar una reducción en el precio unitario, lo que haría los proyectos de aplicaciones de robots más fáciles de justificar. En cuarto lugar se espera que el mercado de la robótica sufra una expansión más allá de las grandes empresas, que ha sido el cliente tradicional para ésta tecnología, y llegue a las empresas de tamaño mediano, pequeño y por que no; las microempresas. Estas circunstancias darán un notable incremento en las bases de clientes para los robots.
La robótica es una tecnología con futuro y también para el futuro. Si continúan las tendencias actuales, y si algunos de los estudios de investigación en el laboratorio actualmente en curso se convierten finalmente en una tecnología factible, los robots del futuro serán unidades móviles con uno o más brazos, capacidades de sensores múltiples y con la misma potencia de procesamiento de datos y de cálculo que las grandes computadoras actuales. Serán capaces de responder a ordenes dadas con voz humana. Así mismo serán capaces de recibir instrucciones generales y traducirlas, con el uso de la inteligencia artificial en un conjunto específico de acciones requeridas para llevarlas a cabo. Podrán ver, oír, palpar, aplicar una fuerza media con precisión a un objeto y desplazarse por sus propios medios.
En resumen, los futuros robots tendrían muchos de los atributos de los seres humanos. Es difícil pensar que los robots llegarán a sustituir a los seres humanos en el sentido de la obra de Carel Kapek, Robots Universales de Rossum. Por el contrario, la robótica es una tecnología que solo puede destinarse al beneficio de la humanidad. Sin embargo, como otras tecnologías, hay peligros potenciales implicados y deben establecerse salvaguardas para no permitir su uso pernicioso.
El paso del presente al futuro exigirá mucho trabajo de ingeniería mecánica, ingeniería electrónica, informática, ingeniería industrial, tecnología de materiales, ingenierías de sistemas de fabricación y ciencias sociales. 18. Proyecto quetzalcoatl Introducción
La Sociedad actual se encuentra inmersa en una Revolución Tecnológica, producto de la invención del transistor semiconductor en 1951 ( fecha en la que salió al mercado ). Este acontecimiento ha provocado cambios trascendentales así como radicales en los ámbitos sociales, económicos, y políticos del orbe mundial.
Ésta Revolución da origen a un gran número de ciencias multidiciplinarias; este es el caso de la Robótica.La Robótica es una ciencia que surge a finales de la década de los 50´s, y que a pesar de ser una ciencia relativamente nueva, ha demostrado ser un importante motor para el avance tecnológico en todos los ámbitos ( Industria de manufactura, ciencia, medicina, industria espacial; etc.), lo que genera expectativas muy interesantes para un tiempo no muy lejano.
Sin embargo es en la Industria de Manufactura donde la Robótica encuentra un campo de aplicación muy amplio, su función es la de suplir la mano de obra del Hombre en aquellos trabajos en los que las condiciones no son las óptimas para este ( minas, plantas nucleares, el fondo del mar; etc.), en trabajos muy repetitivos y en inumerables acciones de trabajo.
Debido al alto costo que representa el automatizar y robotizar un proceso de producción, la tendencia actual en Robótica es la investigación de microrobots y robots móviles autónomos con un cierto grado de inteligencia, este último es el campo en el que se basa este proyecto de investigación.
Por lo anteriormente expuesto se explica la necesidad y la importancia de que Institutos de Investigación, Centros Tecnológicos, la Industria Privada en coordinación con las Universidades se den a la tarea de destinar recursos tanto económicos y humanos para aliviar el rezago tecnológico que el país padece.
Cabe hacer mención que este proyecto fue financiado por el Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV). ¿ QUE ES UN ROBOT ?
Un robot puede ser visto en diferentes niveles de sofisticación, depende de la perspectiva con que se mire. Un técnico en mantenimiento puede ver un robot como una colección de componentes mecánicos y electrónicos; por su parte un ingeniero en sistemas puede pensar que un robot es una colección de subsistemas interrelacionados; un programador en cambio, simplemente lo ve como una máquina ha ser programada; por otro lado para un ingeniero de manufactura es una máquina capaz de realizar un tarea específica. En contraste, un científico puede pensar que un robot es un mecanismo el cuál él construye para probar una hipótesis.
Un robot puede ser descompuesto en un conjunto de subsistemas funcionales: procesos, planeación, control, sensores, sistemas eléctricos, y sistemas mecánicos. El subsistema de Software es una parte implícita de los subsistemas de sensores, planeación, y control; que integra todos los subsistemas como un todo.
En la actualidad, muchas de las funciones llevadas acabo por los subsistemas son realizadas manualmente, o de una forma off-line, pero en un futuro las investigaciones en estos campos permitirán la automatización de dichas tareas.
El Subsistema de Procesos incluye las tareas que lleva acabo el robot, el medio ambiente en el cual es colocado, y la interacción entre este y el robot. Este es el dominio de la ingeniería aplicada. Antes de que un robot pueda realizar una tarea, ésta debe ser buscada dentro de una secuencia de pasos que el robot pueda ejecutar. La tarea de búsqueda es llevada acabo por el Subsistema de Planeación, el cuál incluye los modelos de procesos inteligentes, percepción y planeación. En el modelo de procesos, los datos que se obtienen de una variedad de sensores son fusionados (Integración Sensorial) con modelos matemáticos de las tareas para formar un modelo del mundo. Al usar este modelo de mundo, el proceso de percepción selecciona la estrategia para ejecutar la tarea. Estas estrategias son convertidas dentro de los programas de control de el robot durante el proceso de planeación.
Estos programas son ejecutados por el Subsistema de Control; en este subsistema, los comandos de alto nivel son convertidos en referencias para actuadores físicos, los valores retroalimentados son comparados contra estas referencias, y los algoritmos de control estabilizan el movimiento de los elementos físicos.
Al realizar ésta tarea los mecanismos son modelados, el proceso es modelado, la ganancia de lazo cerrado puede ser adaptada, y los valores medidos son utilizados para actualizar los procesos y los modelos de los mecanismos.
Desde el subsistema de control se alimentan las referencias de los actuadores al Subsistema Eléctrico el cuál incluye todos los controles eléctricos de los actuadores. Los actuadores hidráulicos y neumáticos son usualmente manejados por electroválvulas controladas. También, este subsistema contiene computadoras, interfaces, y fuentes de alimentación. Los actuadores manejan los mecanismos en el Subsistema Mecánico para operar en el medio ambiente, esto es, realizar una tarea determinada. Los parámetros dentro del robot y del medio ambiente son monitoreados por el Subsistema de Sensores; ésta información sensórica se utiliza como retroalimentación en las ganancias de lazo cerrado para detectar potencialmente las situaciones peligrosas, para verificar que las tareas se realizan correctamente, y para construir un modelo del mundo.
VEHÍCULOS
La mayoría de los robots usan ya sea ruedas o extremidades para moverse. Estas son usualmente montadas sobre una base para formar un vehículo, también se montan sobre ésta base, el equipo y los accesorios que realizan otras funciones. Los robots más versátiles son los robots "serpentina"; llamados así por que su locomoción se inspira en el movimiento de las serpientes; se pueden utilizar en terrenos subterráneos y de espacios reducidos, donde el hombre no tiene acceso y el medio ambiente no es el más propicio, como en las minas, túneles y ductos.
Algunos robots móviles tienen brazos manipuladores, esto es debido a sus funciones, y por otro lado la problemática de carecer de brazos idóneos; que tienen que ser pequeños, fuertes, eficientes y baratos. Un problema al cuál se enfrentan los diseñadores de robots, es la generación y almacenado de la energía; los cordones restringen el movimiento pero proveen energía ilimitada.
En contraste los robots con libre movimiento son limitados por su cantidad de energía que puedan almacenar y requieren de comunicación inalámbrica.
En la medida que los robots sean más sofisticados, serán utilizados en un mayor número de aplicaciones, muchas de las cuáles requieren movilidad. En algunas aplicaciones industriales, la necesidad de movilidad es eliminada por la construcción de células de trabajo alrededor del robot, de ésta manera un robot fijo puede dar servicio a varias máquinas. En estos sistemas de manufactura flexible (SMF) las partes son llevadas de una célula de trabajo a otra por vehículos autómatas. En ocasiones para limitar el movimiento del robot se monta sobre rieles para así llegar hasta las células de trabajo con menos complicaciones.
La movilidad es usualmente llevada acabo mediante ruedas, rieles ó extremidades. Los robots con extremidades pueden andar en terrenos más rugosos que los robot con rodado, pero el problema de control es más complejo. Los robots pueden alcanzar movilidad volando. Algunos se deslizan ligeramente sobre al tierra sobre conductos de aire; otros usan levitación magnética, para lo que se requieren superficies especialmente preparadas.
Los robots diseñados para usos en el espacio exterior no son afectados por la gravedad; se elimina el problema de levitación, pero se incrementa el problema del control y la estabilidad.
VEHÍCULOS DE RODADO
Mientras la gente y la mayoría de los animales se desplaza sobre extremidades, la mayoría de las máquinas móviles utilizan ruedas. La ruedas son más simples de controlar, tienen pocos problemas de estabilidad, usan menos energía por unidad de distancia de movimiento y son más veloces que las extremidades. La estabilidad se mantiene al fijar el centro de gravedad de el vehículo en triangulación de los puntos que tocan tierra. Sin embargo, las ruedas solamente pueden utilizarse sobre terrenos relativamente lisos y sólidos. Si se quiere utilizar el robot en terrenos rugosos las ruedas tienen que tener un tamaño mayor que los obstáculos encontrados.
El arreglo más familiar para las ruedas de un vehículo es el utilizado por los automóviles. Cuatro ruedas son colocadas en las esquinas de un rectángulo. La mayoría de estos vehículos tiene maniobrabilidad limitada debido a que tienen que avanzar para poder dar vuelta. También se requiere de un sistema de suspensión para asegurar que las ruedas estén en contacto con la superficie durante todo el tiempo. Cuando el robot se desplaza en línea recta las cuatro ruedas tienen que girar a la misma velocidad, en cambio al momento de dar vuelta las ruedas interiores giran más lento que las ruedas exteriores.
En un robot móvil, estos requerimientos son alcanzados por un buen diseño mecánico y mediante el control de la velocidad de las ruedas de dirección independiente. Sin embargo las imprecisiones que se presentan para alcanzar una trayectoria definida son causadas por factores mecánicos, deslizamiento de las ruedas, dobleces en los ejes de dirección, y desalineamiento de las ruedas. ¿EN QUE CONSISTE EL PROYECTO QUETZALCÓATL?
OBJETIVOS
  1. Construir el prototipo de un Robot Móvil Autónomo para propósitos didácticos y/o para prueba y verificación de algoritmos de control. Y dejar, con este proyecto de investigación, las bases para próximas mejoras en la optimización del prototipo.
  2. Crear nuevos investigadores que cuenten con experiencia y habilidad en el desarrollo de investigaciones y realización de proyectos de este tipo.
  3. Motivar y crear bases para el desarrollo de más proyectos didácticos y/o aplicados a la industria.
  4. Crear vínculos con otras instituciones de enseñanza superior en el Estado con la Universidad de Guadalajara.


Resultado de imagen para el mercado de la robotica y las perspectivas futuras

























METODOLOGÍA DEL DISEÑO 
El proyecto consta básicamente de cuatro etapas; Etapa de Investigación, Etapa de Síntesis Informativa, Etapa de Diseño y Construcción, Etapa de pruebas, calibración y control. A).- Etapa de Investigación.
a) Adquisición de Bibliografía.
b) Búsqueda de las fuentes de información específicas de aquellos elementos que constituyen el prototipo.
c) Investigación de las variables que intervienen en el proceso de control del prototipo.
d) Adquisición y estudio del software para el desarrollo e implementación de los algoritmos de control. B).- Etapa de Síntesis de la Información.

Ésta etapa se basa en la etapa anterior y da como resultado una serie de elementos que son necesarios para el desarrollo de las siguientes etapas de el proyecto. C).- Etapa de Diseño y Construcción.
En ésta etapa se aplica toda la información que se recaba y consulta, y que el diseño del prototipo requiere para el cumplimiento de los objetivos planteados anteriormente. En base a estos lineamientos se construyen las piezas que conforman el prototipo, con el material y componentes adecuados. D).- Etapa de Pruebas, Calibración y Control.
Ésta es la etapa final, se adoptan las medidas necesarias para alcanzar los objetivos planteados. Se aplican los algoritmos de control y se prueban hasta conseguir el resultado esperado. DESCRIPCIÓN DEL PROYECTO
El sistema propuesto consta de :
Un Robot Móvil Autónomo.
Se encuentra formado por 2 módulos unidos entre sí mediante una unión mecánica, la locomoción del prototipo se realiza por medio de dos ruedas en cada eslabón, en donde cada una de las que son parte de el primer eslabón cuenta con un actuador ( motorreductor de DC ).
Los servosistemas se componen de un Driver tipo Chopper con control en lazo cerrado de velocidad, para cada actuador en forma independiente.
La alimentación del Robot se realiza mediante módulos de baterías de 12 V y los voltajes se adaptan por medio de convertidores DC-DC.
La información del entorno donde se mueve el Robot se recaba mediante sensores ultrasónicos, los cuales cuentan con una tarjeta de interfaz, la cual pasa dicha información al Cerebro del Robot.
Debido a la complejidad del proyecto, este se descompone en un conjunto de subsistemas que son: - Subsistema Mecánico.
Este subsistema incluye los eslabones, las uniones mecánicas y el módulo que contiene a todo el sistema que permite que las ruedas giren ( ruedas, ejes, coples, baleros). - Subsistema Eléctrico
Este subsistema incluye los servosistemas ( Drivers ), las interfaces entre los sensores, los drivers y la computadora, así como las fuentes de alimentación.

-Subsistemas de Sensores
Ésta incluye los sensores de velocidad de tipo incremental, y sensores ultrasónicos para la exploración del medio ambiente. - Subsistemas de Procesos, Planeación y Control
En este subsistema se encuentran el control de los motores y todas las tareas que realiza el prototipo interiormente y exteriormente al interactuar con el medio ambiente.



Resultado de imagen para WALLE











LA ROBÓTICA EN LA CIENCIA FICCIÓN

LA ROBÓTICA EN LA CIENCIA FICCIÓN


No obstante las limitaciones de las máquinas robóticas actuales, el concepto popular de un robot es que tiene apariencia humana y que actúa como un ser humano. Este concepto humanoide ha sido inspirado y estimulado por varias narraciones de ciencia ficción .Una de las primeras obras importantes a este concepto fue una novela de Mary Shelley, publicada en Inglaterra en 1817. con el título de Frankenstein, la narración se refiere a los esfuerzos de un científico, el doctor Frankenstein, para crear un monstruo humanoide que luego produjo estragos en la comunidad local. La narración ha sido popularizada en varias versiones a través de los años, plasmados en varias producciones cinematográficas. La imagen en la pantalla cinematográfica del monstruo de Frankenstein salió fuera de los planes de su bien intencionada creadora para producir una impresión duradera en las mentes de millones de personas. Esta impresión ha dado lugar a que los robots se asimilen a imágenes similares de ciencia y tecnología concierto peligro de locura homicida. Una obra checoslovaca publicada en el año de 1917 por Carel Capek, denominada ³Rossum´s Universal Robots´, da lugar al término robot. La palabra checa ³robota´ significa servidumbre o trabajador forzado, y cuando se tradujo al inglés se convirtió en el término robot. Dicha narración se refiere a un brillante científico llamado Rossum y su hijo, quienes desarrollan una sustancia química que es similar al protoplasma. Utilizan esta sustancia para fabricar robots, y sus planes consisten en que los robots sirven a la clase humana deforma obediente y para realizar todos los trabajos físicos. Rossum prosigue realizando mejoras en el diseño de los robots, eliminando órganos y otros elementos innecesarios, y finalmente desarrolla un ser ³perfecto´. El argumento experimenta un giro desagradable cuando los robots perfectos comienzan a no cumplir con su papel de servidores y se revelan contra sus dueños, destruyendo toda la vida humana.





Entre los escritores de ciencia ficción, Isaac Asimov ha contribuido con varias narraciones relativas a los robots, comenzando en 1939, y a él se le atribuye la definición del término robótica. La imagen de un robot que apareceen su obra es el de una máquina bien diseñada y con una seguridad garantizada que actúa de acuerdo con tres principios. Estos principios fueron denominados por Asimov las tres leyes de la robótica, y son:1. Un robot no puede actuar contra un ser humano o, mediante la inacción, permitir que un ser humano sufra daños.2. Un robot debe obedecer las órdenes dadas por los seres humanos, salvo que estén en conflicto con la primera ley.3. Un robot debe proteger su propia existencia a no ser que esté en conflicto con las dos primeras leyes. Varias películas cinematográficas y de televisión han añadido al saber popular de la robótica algunos robots que actúan de servidores amistosos y compañeros de aventuras en diferentes maneras. La película titulada ³The daythe Earth Stood Still´ de 1951, tenía como argumento una misión desde un planeta lejano enviado de la tierra en un platillo volante para intentar establecer las bases para la paz entre las naciones del universo.






martes, 15 de septiembre de 2015

LOS PRIMEROS ROBOTS

Robot


Robot fabricado por Toyota.

El robot estadounidense Atlas (en desarrollo desde 2013) está diseñado para una variedad de tareas de búsqueda y rescate.
Un robot es una entidad virtual o mecánica artificial. En la práctica, esto es por lo general un sistema electromecánico que, por su apariencia o sus movimientos, ofrece la sensación de tener un propósito propio. La independencia creada en sus movimientos hace que sus acciones sean la razón de un estudio razonable y profundo en el área de la ciencia y tecnología. La palabra robot puede referirse tanto a mecanismos físicos como a sistemas virtuales de software, aunque suele aludirse a los segundos con el término de bots.1
No hay un consenso sobre qué máquinas pueden ser consideradas robots, pero sí existe un acuerdo general entre los expertos y el público sobre que los robots tienden a hacer parte o todo lo que sigue: moverse, hacer funcionar un brazo mecánico, sentir y manipular su entorno y mostrar un comportamiento inteligente, especialmente si ese comportamiento imita al de los humanos o a otros animales. Actualmente podría considerarse que un robot es una computadora con la capacidad y el propósito de movimiento que en general es capaz de desarrollar múltiples tareas de manera flexible según su programación; así que podría diferenciarse de algún electrodoméstico específico.
Aunque las historias sobre ayudantes y acompañantes artificiales, así como los intentos de crearlos, tienen una larga historia, las máquinas totalmente autónomas no aparecieron hasta el siglo XX. El primer robot programable y dirigido de forma digital, el Unimate, fue instalado en 1961 para levantar piezas calientes de metal de una máquina de tinte y colocarlas.
Por lo general, la gente reacciona de forma positiva ante los robots con los que se encuentra. Los robots domésticos para la limpieza y mantenimiento del hogar son cada vez más comunes en los hogares. No obstante, existe una cierta ansiedad sobre el impacto económico de la automatización y la amenaza del armamento robótico, una ansiedad que se ve reflejada en el retrato a menudo perverso y malvado de robots presentes en obras de la cultura popular. Comparados con sus colegas de ficción, los robots reales siguen siendo limitados.

Historia[editar]

Los primeros autómatas[editar]

En el siglo IV antes de Cristo, el matemático griego Arquitas de Tarento construyó un ave mecánica que funcionaba con vapor y al que llamó «La paloma». También el ingeniero Herón de Alejandría (10-70 d. C.) creó numerosos dispositivos automáticos que los usuarios podían modificar, y describió máquinas accionadas por presión de aire, vapor y agua.6 Por su parte, el estudioso chino Su Sung levantó una torre de reloj en 1088 con figuras mecánicas que daban las campanadas de las horas.7
Al Jazarí (1136–1206), un inventor musulmán de la dinastía Artuqid, diseñó y construyó una serie de máquinas automatizadas, entre los que había útiles de cocina, autómatas musicales que funcionaban con agua, y en 1206 los primeros robots humanoides programables. Las máquinas tenían el aspecto de cuatro músicos a bordo de un bote en un lago, entreteniendo a los invitados en las fiestas reales. Su mecanismo tenía un tambor programable con clavijas que chocaban con pequeñas palancas que accionaban instrumentos de percusión. Podían cambiarse los ritmos y patrones que tocaba el tamborilero moviendo las clavijas.

Desarrollo moderno[editar]

El artesano japonés Hisashige Tanaka (1799–1881), conocido como el «Edison japonés», creó una serie de juguetes mecánicos extremadamente complejos, algunos de los cuales servían té, disparaban flechas retiradas de un carcaj e incluso trazaban un kanji (caracteres utilizados en la escritura japonesa).8
Por otra parte, desde la generalización del uso de la tecnología en procesos de producción con la Revolución Industrial se intentó la construcción de dispositivos automáticos que ayudasen o sustituyesen al hombre. Entre ellos destacaron los Jaquemarts, muñecos de dos o más posiciones que golpean campanas accionados por mecanismos de relojería china y japonesa.

Robots equipados con una sola rueda fueron utilizados para llevar a cabo investigaciones sobre conducta, navegación y planeo de ruta. Cuando estuvieron listos para intentar nuevamente con los robots caminantes, comenzaron con pequeños hexápodos y otros tipos de robots de múltiples patas. Estos robots imitaban insectos y artrópodos en funciones y forma. Como se ha hecho notar anteriormente, la tendencia se dirige hacia ese tipo de cuerpos que ofrecen gran flexibilidad y han probado adaptabilidad a cualquier ambiente. Con más de 4 piernas, estos robots son estáticamente estables lo que hace que el trabajar con ellos sea más sencillo. Sólo recientemente se han hecho progresos hacia los robots con locomoción bípeda.
En el sentido común de un autómata, el mayor robot en el mundo tendría que ser el Maeslantkering, una barrera para tormentas del Plan Delta en los Países Bajosconstruida en los años 1990, la cual se cierra automáticamente cuando es necesario. Sin embargo, esta estructura no satisface los requerimientos de movilidad o generalidad.
En 2002 Honda y Sony, comenzaron a vender comercialmente robots humanoides como «mascotas». Los robots con forma de perro o de serpiente se encuentran, sin embargo, en una fase de producción muy amplia, el ejemplo más notorio ha sido Aibo de Sony.

La robótica en la actualidad[editar]

En la actualidad, los robots comerciales e industriales son ampliamente utilizados, y realizan tareas de forma más exacta o más barata que los humanos. También se les utiliza en trabajos demasiado sucios, peligrosos o tediosos para los humanos. Los robots son muy utilizados en plantas de manufactura, montaje y embalaje, en transporte, en exploraciones en la Tierra y en el espacio, cirugía, armamento, investigación en laboratorios y en la producción en masa de bienes industriales o de consumo.9
Otras aplicaciones incluyen la limpieza de residuos tóxicos, minería, búsqueda y rescate de personas y localización de minas terrestres.
Existe una gran esperanza, especialmente en Japón, de que el cuidado del hogar para la población de edad avanzada pueda ser desempeñado por robots.10 11
Los robots parecen estar abaratándose y reduciendo su tamaño, una tendencia relacionada con la miniaturización de los componentes electrónicos que se utilizan para controlarlos. Además, muchos robots son diseñados en simuladores mucho antes de construirse y de que interactúen con ambientes físicos reales. Un buen ejemplo de esto es el equipo Spiritual Machine,12 un equipo de 5 robots desarrollado totalmente en un ambiente virtual para jugar al fútbol en la liga mundial de laF.I.R.A.13
Además de los campos mencionados, hay modelos trabajando en el sector educativo, servicios (por ejemplo, en lugar de recepcionistas humanos14 o vigilancia) y tareas de búsqueda y rescate.